

Piacenza, 10/04/2013 Giornata di Studio su Sensori e Data Fusion in Lavorazioni Meccaniche

Energy Harvesting

an Enabling Technology for Autonomous Sensors in Automatic Machinery

A.Bertacchini

alessandro.bertacchini@unimore.it

Energy Harvesting (EH)

Energy harvesting (also known as energy scavenging) is the process by which *energy is captured and stored*.

Why for Autonomous Sensors? It is a solution to *extend battery lifetime* and possibly to *replace battery* in a wide range of Ultra Low Power (ULP) applications

- Wireless Sensor Network (WSN),
- Consumer and Portable Electronics,
- Automatic Machineries, etc...

- Processing power doubles every 2 years
- Batteries capacity doubles every **10 years**
 - High Environmental Impact
 - High Replacement Costs

We need of a more efficient way to enable longer life

Energy Harvesting from **renewable sources**

Energy Source	Harvested Power
Vibration/Motion	
Human	4 μW/cm ²
Industry	100 µW/cm ²
Temperature Difference	
Human	25 μW/cm ²
Industry	1-10 mW/cm ²
Light	
Indoor	10 μW/cm ²
Outdoor	10 mW/cm ²
RF	
GSM	0.1 µW/cm ²
WiFi	0.001 mW/cm ²

Source: Texas Instruments

Energy Harvesting is not New !!

Source: Texas Instruments

New EH Applications Fields – *Biomedical*

Problems

- Autonomy of the Battery
- Batteries are toxic

Solution

- Energy harvested by the human body
- RF power delivery

New EH Applications - Avionics

From

- Complex
- Expensive
- Weight

• Each Seat is a "Mini WSN"

New EH Applications – *Automatic Machinery*

When (Autonomous) Wireless Sensors in Automatic Machinery?

- Harvestable energy available
- Difficult to install or power devices
- Difficult to reach devices for maintenance

- Wires too costly
- Numerous devices
- Environmentally friendliness required
- High uptime demanded

One or more of these characteristics are required for energy harvesting to make sense compared to batteries

Energy Harvesting Tradeoffs

- No power wires
- Easier installation
- Lower maintenance
- Environmentally friendly
- Higher uptime

- Dependent on availability of harvestable energy source
- Strict power budget
- Less mature technology
- Upfront cost may be higher

A different approach

Energy Harvesting Systems – Block Diagram

Each block have to be customized/optimized accordingly with the specific application (i.e. power budget, power consumption, etc...)

Energy Sources in Automatic Machineries

A lot of energy is usually wasted during normal operation of the machinery

- Vibrations
- Thermal Gradients
- Kinetic Energy
- •(Acoustic)

Ad-hoc Energy can be provided (Remote Powering)

•**RF signals** compliant with regulations

Vibrations Energy Harvesting

Source: Texas Instruments

- Exploits the **Seebeck Effect**
 - A voltage is developed in a loop containing two dissimilar metals, when the two junctions are exposed to different temperatures
- Thermocouples are the basic element
- Thermopiles are made of a large number of thermocouples connected
 - thermally in parallel
 - electrically in series
- A thermoelectric generator (**TEG**) is made of thermopiles sandwiched between a hot and a cold plate
- Macro- and Microscale devices

Thermoelectric Energy Harvesting

- Heat flows from the hot side to the cold side, through the pillars
- The black and white pillars represent the two types of thermoelectric materials (thermocouples)
- The metal interconnects are drawn in grey (thermopiles)

- The main idea is to provide power supply through
- •Generation of an Electro-Magnetic field (EM)
- •Generation of an ad-hoc Radio-Frequency Signal (RF) *Power Delivery*

EM/RF harvester architecture

EH @ UniMORE Piezoelectric MEMS transducers

Resonance @ low frequencies with MEMS scale transducers!!

- Length 100's of µm, up to some mm
- Width $10^{\prime}s~of~\mu m$
- Thickness **some** µm

Output Power in the order of μ **W**

More than one resonance frequency in the range 0-200Hz (increase of the bandwidth)

EH @ UniMORE

Enhanced Safety in Off-Highway Vehicles

- Autonomous device for Automatic Identification of Implements or Trailers
- **Commercial** Piezoelectric Transducers
- **Customized** Low Power front-end electronics with smart power management
- HW-SW Co-Design

EH @ UniMORE Enhanced Safety in Off-Highway Vehicles

End Device

– V_{DD}: 2.0V÷3.3V

48mm

- $P_{\text{STAND-BY}}: <5\mu W$
- $P_{active_AVG} \mu C running: <10 \mu W$
- $P_{active_AVG} \mu C$ running & RF TX: 27 μW
- TX @ 2.4 GHz (802.15.4 standard)

EH @ UniMORE Kinetic Energy Harvesting

- Energy harvested from user opening and closure of urban garbage bin
- Kinematic mechanism: articulated quadrilateral
- Instantaneous P_{out} ≈ 1W for each operating cycle (bin door opening & closure)

EH @ UniMORE

RF EH system for power delivery in WSN nodes

- RF Harvester @868 MHz designed to power supply a TI MSP430 µC
 - V_{DD}: 2V÷3.6V
 - Ι_{STAND-BY}: 1.1μΑ
 - I_{ON}: 21mA
 - t_{on}: 20ms
- Implemented in STM 130nm CMOS

New research challenges

- New transduction mechanisms
- Multi-Source harvesting (power combining)
 - Solar+Vibration
 - Solar+RF
 - Solar+Thermal
 - Vibration+RF
 - Vibration+Thermal
 - Vibration+Thermal+RF

Conclusions

- Energy Harvesting
 - Enable perpetually powered ULP systems (battery free)
 - Extend battery lifetime
- Efficient EH Systems have to be customized on the specific application
- Design of high efficiency EH Systems requires
 - New MEMS/NEMS transducers
 - New Energy storage devices
 - ULP HW Components
 - ULP SW algorithms

Multidisciplinary Activities

Contact:

Alessandro Bertacchini

Università di Modena e Reggio Emilia, DISMI – Pad. Morselli Via G. Amendola, 2 – 42122 Reggio Emilia Italy Email: **alessandro.bertacchini@unimore.it** Phone: +39 0522 522646 (Ufficio) +39 0522 522667 (Lab. ELECOM) Fax: +39 0522 522609